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Copper-mediated oxidation of organic substances have been
attracting much attention due to their biological significance and 30 (©) \uJ\",/
industrial applicabilityt Thus far, intramolecular aromatic and _ 2
aliphatic ligand hydroxylation as well as intermolecular phenolate £ 20
oxygenation, H-atom abstraction (including dehydrogenation), and z ®) w
sulfoxidation by the distinct copper-active oxygen species have been 3 . ) :
explored in detail. Among those reactions, the €0,-mediated 10 500 800 700
arene hydroxylation has been studied extensively in connection with Raman shift / om”
the catalytic mechanism of tyrosinase, a unique example of dicopper ok 1 i N —

; L . - 400 500 600 700 800

monooxygenask.® The detailed mechanistic studies have indicated Wavelength / nm

that both the aromatic ligand hydroxylation and the phenolate Figure 1. Electronic spectrum of-2 (A) in acetone at-80 °C. (Inset)

oxygenation reactions by theu-2n>peroxo)Cu(ll} species Resonance Raman spectratb® (~5 mM) prepared from (B}, and
proceed via an electrophilic aromatic substitution mechaismé (C) 180, in acetone at-90 °C (406.7 nm laser excitation).

similar to the enzymatic mechanism of phenolase activity of m) measured with a 406.7 nm laser excitation showed an isotope-
tyrosinase® Recently, contribution of bigtoxo)Cu(lll), species sensitive band at 744 crh(16-18A = 40) typical of they(O-O) of

to the aromatic ligand hydroxylation and the phenolate oxygenation i, w-n2n?>peroxo)Cu(ll) species, and no symmetric stretch of

reactions has also been demonstrated to expand the scope/of Cuq bisf-o0x0)Cu(lll), core was observed as in the case of #Cu

O, chemistry, peroxo vs 0xo, as in the case of heme chenfi8try. (NO,-XYL-H)(02)]2+3 In addition, no intermolecularuty?2y?>

In this study, we have found novel reactivities of a discrete perox0) species such as a dimer of dimer was detected at the

(u-n?:n>-peroxo)Cu(lly complex, [Cu(Oz)(H-L)]?* (H-2), which concentrations bellow~10 mM22 Copper(l) complexes having

is capable of performing not only intramolecular hydroxylation of variousp-substitutednxylyl groups, [Cu(R-L)]2* (R-1: MeO-1,

them-xylyl linker of the dinucleating ligand H-L but also intermo- ¢ g;.1 andNO,-1) also gave theu-272-peroxo)Cu(ll} species

lecular epoxidation of styrene and hydroxylation of THF. The results [c(,,(0,)(R-L)]2* (R-2: MeO-2, t-Bu-2, andNO,-2) which were

provide further insights into the reactivity of g®, complexes. also characterized by UWis and rR (Figures S2, S3, and S4).
Decomposition oR-2 under the conditions §-2] = ~0.2 mM

A A in acetone at-60 °C) gave the hydroxylated ligands, H-L-Ct-Bu-
m‘@\{@(ﬁjm cUz~"f""-cu=~ . m‘@\([?:\“mm L-O~, MeO-L-O7, and NQ-L-O~ in fairly good yields ¢98%,
.1 ?{3 S0 .1 -ﬂj 90%, 75%, and 72%), where incorporation of the O-atom from O
Me Me A2 Me olon Me was confirmed by an isotope-labeling experiment usfi@y. The
PR T crystal structure of the product [g(td-L-O)(OH)]?* confirmed the
L%UQLL E: ;%t; X = H, Cl, MeO . aromatic ligand hydroxylation (Figure S5A). Decomposition of the
" G 1 O <o R-2 in acetone obeyed first-order kineti¢s = ki[R-2]).13 The
(@\ decay rates are significantly slower than those of,{Og)(R-XYL-
::?N Nqi’; @) QOH H)]2" and [Cy(O,)(m-XYL P2+ (Table 1)2¢4 The low reactivity
R-XYL-H 0 is attributable to unfavorable enthalpy effect, although entropy effect

is favorable. However, the origin of such high thermal stability of
Reaction of [Cy(H-L)]2" (H-1)1 with O, in acetone at-80°C R-2is not known at present. As found for [g®,)(R-XYL-H)] 2",

gave a dark-greem{nZn?-peroxo)Cu(ll} species [Cr(O,)(H-L)] 2" the hydroxylation rate increases as the electron-donating nature of
(H-2), which was characterized by electronic and resonance Ramanthe substituent R increases, and a Hammett plot gawe—1.9 at

(rR) spectroscopies. The electronic spectrum showed an intghse  —50 °C (Figure S7B), which is almost the same as those of the
(O27)-to-Cu(ll) LMCT band at 351 nme(= 32000 Mt cm™1), arene hydroxylation by [G{O,)(R-XYL-H)] 2" (o = —2.1 at—80
characteristic of those of the:{;%n2-peroxo)Cu(ll} complexes °C),2¢ [Cuy(Oy)(LPY?B9),]2+ (p = —1.8)19 [Cux(O2)(MeL66)? (o
(Figure 1)1 The rR spectrum of an acetone solutiontb (~5 = —1.84 at—55 °C).2 and [Cuy(p-R-PhO)(O} DBED);]?" (o =

- — —2.2 at—120°C) .5 These values are also similar to that found for
igﬁg‘;‘;ﬁ‘i"’ﬁaﬂga’a’a{gtgg‘eamh Institutes tyrosinase £2.4 at 25°C).2° Thus, the aromatic hydroxylation in
§ Osaka City University. the present ligand system also proceeds via an electrophilic aromatic
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Table 1. Kinetic Parameters for Arene Hydroxylation by
(u-17%:m?-peroxo)Cu(ll),

ligand AHkJ mol—t ASHImol"1 Kt ki/s~1a ref

NO2-2 65+ 1 —26+3 1.43x 104  this work
H-2 63+ 1 —-11+3 2.12x 1073  this work
t-Bu-2 6241 1+4 1.79x 102 this work
MeO-2 59+1 8+4 1.35x 1071  this work
H-XYL-H 50+1 —-35+2 1.49x 1001 2c
m-XYL P4 50.1+ 0.2 —50.44+0.9 1.99x 102 4

MeL66 29.1+ 3.0 —115+ 15 8

aAt —50 °C. Thek; values forNO2-2 and MeO-2 are estimated by
extrapolation using the kinetic parametetdH and AS').

Figure 2. Space-filling model of [Ce(OH)x(H-L)]2" generated by Chem3D.
Hydrogen atoms were placed at the calculated positions (€-H10 A).
Yellow: copper, red: oxygen, dark blue: nitrogen, gray: carbon, and light
blue: hydrogen.

substitution mechanism, which is consistent with the lack of a
kinetic isotope effect by deuterium-substitution at the hydroxylated
position f(H) = 2.12x 103 s tandky(D) = 2.24 x 10 3s ! at
—50°C).

Although the structural information dfi-2 is not available, a
closely related big(-OH)Cu(ll), complex, [Cy(OH),(H-L)]2"
(Figure 2), provides important structural information for the reaction
with exogenous substrates such as styrene and THF. Inspection o

the crystal structure suggests that there is enough space around the

side-on peroxide to allow the substrate to approach the peroxide
moiety. In fact, the reaction dfi-2 (2.9 mM) and styrene (2.9 M)
in acetone at—70 °C gave ~90% of styrene oxide, in which
incorporation of O-atom from dioxygen was confirmed by using
180,. Kinetic study in acetone yielded the rate equation (k; +
ko[styrene])H-2] (kons = (ki + kz[styrene])), wherek; andk, are
the rate constants for the ligand hydroxylation Hf2 and
epoxidation of styrene, respectively. Plotlgfs vs concentrations
of styrene gave a linear line with an intercept corresponding to
(4.64x 10 s 1) and yieldedk, (4.50x 104s 1M1 at—60°C
(Figure S8B), the former of which is in agreement with that obtained
for the decay ofH-2 (4.10 x 10* s™%, see Table S1¥ It is
noteworthy that the epoxidation rate constipnincreases as the
electron-donating power of thesubstituent of styreneX(= MeO,
H, and Cl) increases. A Hammett plot gawe= —1.9 at—60 °C,
which is almost the same as that for the aromatic ligand hydroxyl-
ation. Thus, both reactions seem to involve a rate-limiting electro-
philic attack of the peroxo ligand to the%sparbon of the substrate.
Suchp values have also been reported for the epoxidatiqm X
styrenes mediated by the high-valent@(porphyrin) (M= Mn
and Fe) (2.1 t0—0.93)1

In addition, it is noteworthy thatH-2 also oxidizes THF to
2-hydroxytetrahydrofuran (yieles ~62%). In the case ads-THF,
a large kinetic isotope effect (KIE 50 at—80 °C) was observed,
which is significantly larger than that reported for thgCp-
(MePY2)}2(0,)]?" system (KIE= 3.2)1¢ Such a large KIE value
clearly indicates that the hydroxylation of THF bi2 involves a
rate-limiting H-atom abstraction process from the substrate.

In summary, the-n%n?-peroxide ofH-2 is capable of perform-
ing not only hydroxylation of then-xylyl linker of the ligand but
also the epoxidation of styrenes via an electrophilic addition of the
peroxide to the €&C bond and hydroxylation of THF by H-atom
abstraction. To the best of our knowledge, this is the first example
of the epoxidation of styrene and hydroxylation of THF mediated
by a discrete{-n%n2-peroxo)Cu(ll} species. Although no detect-
able bisf-oxo)dicopper(lll) exists in the present reaction system,
a small amount of bigt-oxo)dicopper(lll) species present in a rapid
preequilibrium may not be excluded as a reactive intermediate.
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